翻訳と辞書
Words near each other
・ Aida Bamia
・ Aida Baraku
・ Aich (river)
・ Aich (surname)
・ Aich, Styria
・ Aicha Elbasri
・ Aicha Fall
・ Aicha Mezemate
・ Aicha vorm Wald
・ Aicha è tornata
・ Aichach
・ Aichach-Friedberg
・ Aichan Kara Giousouf
・ Aichelberg
・ Aichelberg Castle
Aichelburg–Sexl ultraboost
・ Aichele
・ Aichen
・ Aicher
・ Aichhalden
・ Aichi (disambiguation)
・ Aichi (surname)
・ Aichi 5th district
・ Aichi 6th district
・ Aichi AB-2
・ Aichi AB-3
・ Aichi AB-4
・ Aichi AB-6
・ Aichi AC-1
・ Aichi Arts Center


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Aichelburg–Sexl ultraboost : ウィキペディア英語版
Aichelburg–Sexl ultraboost
In general relativity, the Aichelburg–Sexl ultraboost is an exact solution which models the physical experience of an observer moving past a spherically symmetric gravitating object at nearly the speed of light. It was introduced by Peter C. Aichelburg and Roman U. Sexl in 1971.
The metric tensor can be written, in terms of Brinkmann coordinates, as
: ds^2 = -8m \, \delta(u) \, \log r \, du^2 + 2 \, du \, dv + dr^2 + r^2 \, d\theta^2,
: -\infty < u < \infty, \, 0 < r < \infty, \, -\infty < v < \infty, -\pi < \theta < \pi
The ultraboost can be obtained as the limit of various sequences of smooth Lorentzian manifolds.
For example, we can take ''Poor-man's Gaussian pulses''
: ds^2 = -\frac \, du^2
- 2 du \, dv + dr^2 + r^2 \, d\theta^2,
: -\infty < u < \infty, \, 0 < r < \infty, \, -\infty < v < \infty, -\pi < \theta < \pi
In these plus-polarized ''axisymmetric vacuum pp-waves'', the curvature is concentrated along the axis of symmetry, falling off like O(m/r), and also near u=0. As a \rightarrow \infty, the wave profile turns into a Dirac delta, and we recover the ultraboost. (To avoid possible misunderstanding, we stress that these are exact solutions which approximate the ultraboost, which is also an exact solution, at least if you admit impulsive curvatures.)
This resolves the following paradox: The moving particle will "think" that the stationary object (let's use a planet) has a huge mass, because in the particle's point of view the planet is moving at an ultra relativistic speed. What if the particle moves fast enough so that the planet becomes a black hole, and the particle gets inside the event horizon? Why does it fly right past (like a photon) and not get trapped?
== References ==

* ''See Section 7.6.12''
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Aichelburg–Sexl ultraboost」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.